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Abstraet. Matrix elements of the pmpagator in 3 spherical wave representation are the key 
quantities in most scattering problems. Here. we review the existing methods to compute them 
and propose a new one-a set of recurrence relations-which is faster than the currently used 
ways of calculating them at high energy. 

1. Introduction 

One of the main problems encountered in the scattering theory in solids is the way to 
calculate as efficiently as possible the matrix elements of the propagator in a spherical 
wave representation. These quantities being, together with the t matrices, the essential 
ingredient of the theory, it is necessary to have a fast and accurate way to compute them. 
Several approaches have already been proposed to tackle this problem and they can be 
divided into two categories: direct methods and recursive schemes. We propose here new 
recurrence relations to calculate these quantities which we believe are faster than those 
already proposed. 

In section 2, we recall the definition of the matrix elements of the propagator and of 
related quantities. We review in section 3 the various methods (at least those known to us) 
existing to calculate these matrix elements and discuss them. New recurrence relations are 
derived in section 4. They are tested both in speed and stability in section 5 and compared 
to other existing ways of computation. 

2. Definitions 

Let us consider an outgoing spherical wave of angular momentum L = (8 ,  m) centred on 
an atom i situated at ri with respect to the origin, and incoming on an atom j located at rj. 
From partial wave theory [I], we know that such a wave can be represented by the wave 
function 

qL = i'@'(klr - r i l ) Y L ( r  - q) (1) 

with layl(kr)  being a spherical Hankel function of the first kind [Z], Y,( i )  a spherical 
harmonic and i the unit vector in the direction of r .  
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0 
Figure 1. Scarering geometry. 

Such a wave cannot be scattered directly by atom i but must be re-expanded first as a 
linear combination of spherical waves centred on the scatterer: 

c_ 

i'h!)(klT - T ~ J ) Y L ( T  - p;) = CGL,L(Tij)iFjtr(klT - T~I)YL#(T - rj) (2) 
L' 

where q j  = rj - ri as defined in figure 1. 
The coefficients of the linear combination, which we can write as G!,, to simplify the 

notation, are the matrix elements of the free electron propagator C l ( k )  taken between state 
(L ' ,  kl centred at rj and state Ik, L )  centred at r,. 

Relations such as equation (2) are called addition theorems and have been known for 
some time now [3-51. Here, 

with 

G(L'L"1L) = [ Y L , ( ~ ) ~ L , , ( ~ ) ~ ~ ( ~ ) d ~ ~ .  (4) 

G(L'L"1L) is a Gaunt coefficient [6] and is usually expressed in terms of Wigner's 3 j  
symbols [7] for numerical calculations. 

Introducing the Hankel polynomial c t ( k r )  [2l by 

i'hY)(kr) = (e"'/ikr)c'(kr) (5 ) 

i.e. the correction factor to the asymptotic form of the spherical Hankel function, we can 
write Gf,L conveniently in terms of its reduced form 3LrL: 

G!,L = 4 ~ ( e ~ ~ ~ ~ J / i k r j j ) 2 L , ~  (6) 

We can now rotate the bond direction rj onto the z axis to take advantage of the fact that 
z is a quantization axis for the angular momentum. The expression of 3LrL along the z 
direction will be therefore much simplified. Introducing the z axis reduced free-electron 
propagator matrix elements in an angular momentum representation by 

( ? ~ , ~ ( r ~ , i )  = j:,t(m)8m, = f(2.Y + 1)/4~1[(2! + 1 ) / 4 i r l ~ ~ r t ( ~ ) 6 m ,  (7) 
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and applying rotation maeices [SI, we can expand it in magnetic quantum number: 

GfL, = ~&,(p~~ - R, -eij, o ) & ( + z ) R ~ ( o ,  e,,, n - pij) (8) 
e 

where (Oij, pij) are the spherical polar coordinates of +ij. 

Writing the Gaunt coefficient in (3) in terms of Wigner's 3 j  symbols [7] leads to 

It is worth noting that this quantity and the corresponding one for &(m)  do not depend 
on the sign of f i .  From now on we will consequently write them as ~$~(lfil) and &(lfil). 
Moreover, @e(lfil) (and &(lml) )  is symmetrical with respect to e and e', i.e. 

hy,e(lfii) = Rkj,,(Ifil). (10) 

These two properties are fundamental as they allow us to reduce the number of values to 
be computed. Furthermore, the set of values of f i  can be most of the time limited to the 
first few without significant loss of accuracy. The reason for this was argued by Barton 
and Shirley [5 ]  and more recently by Rehr and Albers [9]. We refer the reader to these 
references for a comprehensive discussion of the matter. 

3. State of the art 

The more straightforward way to calculate the matrix elements of the propagator G!,,. is to 
make use of their definition (equation (3)). This can be a fast way to do it provided that 
the Gaunt coefficients have already been tabulated. However, at high energies where many 
values of the angular momentum indices ( e ,  m )  are necessary for the addition theorem (3) 
to converge, this method can become fastidious as Gaunt coefficients G(L'L"IL) will need 
a lot of storage place and much time to be computed. One way to circumvent this latter 
problem i s  to use a stable recursive scheme such as that proposed by Schulten and Gordon 
[IO] to calculate tht: 3 j  symbols occurring in the Gaunt coefficient. But this can be stili 
time consuming and will leave unaltered the storage problem. 

A better philosophy, at least at high energy, is to find recurrence relations for G k  or 
to express them in terms of quantities that can be easily calculated by means of a recursion 
scheme. We review here the various approaches that can be found in the literature. 

3. I .  Chew's recurrence relations 

A general recursion scheme was recently proposed by Chew [ 111. Writing 

and introducing 
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Chew found 
a & p e w . e + i m  = -at,,,at'mp.t-lm + at,- l , , , ,~-im'.em + a ~ + l , , , ~ ~ + i m , . e m  

b ; , a t ~ . t + ~ m + ~  = -bTm~tw.c-im+l + b i , - i , ' - i f f ~ , - ~ m ' - ~ . ~ m  + b ~ , + I , , , , - ~ a ~ , t ~ ~ , - ~ , t ~  

with the initial value 

+ - 
t - (13) 

b&tw.t+le+i = b~- i ,~-pe~- i~ , - i , e t  + bi+ld-l aeft im,- I ,et (14) 
and the property 

(15) 
which is only valid for real k .  

This method to calculate GfCL is very appealing and very fast indecd. Unfortunately, 
the first recurrence relation in (13) becomes unstable at high energy [12]. Moreover, there 
is no way to truncate the calculation at high energy. 

Alternatively, it is possible to focus on t$jrt(lml) instead of G!,L. This is the method 
favoured by most authors as the development in d converges very quickly, especially at 
high energy. 

3.2. The Rehr and Albers approach 

One elegant way to find a fast procedure to compute the h~,e(l?%l) is to use the Rehr and 
Albers separable representation of the matrix elements of the free-electron propagator [9]. 
Indeed, if we follow their main result, we can write 

m'+m I f f e w . e - m  = (-1) at,-m,.tm 

where the contributions from the L incoming partial waves and from the various L' outgoing 
partial waves have been separated. Here, t ,  = min(t,P), n, = min(E',t - Idl) and 
zjj = l/ikrj,. The other quantities are given by 

Amn(zjj) L = R,&,,(?,j + 2)(-l)'mi,/[(U + 1)/41r](t - Ikl)!/(t 4 Idl)!Hi'fi'tn'(zij) 

AgD(zij) = R;+& -, ?jj)J[(ze' + 1)/41ri(e' + imi)!/(t' - imi)!~j:)(z~~) 
(17) 

where we have defined for convenience 

(18) 
d" - 
dz" 

with ce(z) = cr(kr) ,  the Hankel polynomial of degree e. If we combine (7), (8) and (16), 
we are led to the important relation 

H p ( z )  = (z"/n!)-(Ct(z))  

H,'"'(z.) can be computed with the recursion procedure 



Matrix elements of propagator 6215 

3.3. Nozawa's recursion scheme 

An alternative procedure is to derive directly a recursive scheme to calculate i!,e(lfi/). This 
can be donc vcry simply by using Nozawa's Helmholtz solid harmonics addition theorem 
coefficient recurrence relations [4]. These solid harmonics are defined by 

with 

The Hankel polynomials ce(kr) may be calculated by means of the recursion relation 

c~- l (k r )  - ce+i(kr) = [(B + l)/ikrlce(kr) (28) 

and the initial values 

co(ki-1 = 1 

c1 (kr )  = 1 + i/kr. 
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3.4. Fritzsche 's recurrence relations 

Recurrence relations for related quantities have also been derived by Fritzsche [13]. In 
order to compare the two sets of relations, we have to relate his matrix elements of the z 
axis propagator to ours. The  link between the two notations is 

It can be checked easily that inserting (30) in his equaiton (13) leads exactly to (2.56). His 
second relation however is different. It transforms under (30) as 

with the initial value 

(32) 

Note that this initial value can be greatly simplified by making use of equation (B8) of [9]. 
Indeed, we can replace it by 

I;ir(lel) = J[ (e + lfil)!/(t - ~ m l ) ! l ( ~ l m l -  1)!!/2lmllml!c~(krij)/(ikrd)lml. (33) 

Both sets (Nozawa's and Fritzsche's) are complete and therefore any of them may be used 
to generate the @ , e ( l f i l )  necessary for the calculation of the propagator. However, both 
sets of equations raise the same problem: due to the i$e+,(lfi!) term on the right-hand 
side of equations (25) and (31), the total number of values that have to be calculated is far 
greater than the number of values explicitly needed. For example, if we want to calculate 
h~s2s (0 )  by means of equation (B7), we have to carry on the recursion scheme up to 6i50(0)! 
This process will slow down the recursion and it is therefore interesting to seek for new 
recurrence relations that do not exhibit any incrementation in or L' on the right-hand side. 

Note finally that separable representations of the matrix elements of the Green operator 
might lead in certain cases (especially for small values of rij at high energy and when 
truncating the angular momentum expansion) to inaccuracies. This problem was pointed 
out very recently by Fritzsche [I41 and could be due to the oscillatory nature of the coupling 
between the two angular momenta L and L'. 

4. New recurrence relations 

An efficient way to obtain such new relations is to use equation (19) which is the expression 
of z&(lfil) in the Rehr-Albers scheme, as a starting point: 
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As shown in the previous section, the Rehr-Albers functions Hf'(z) satisfy the recurrence 
relation 

(z) = ~:1: (z) - (2e + I)Z[H:"'(Z) + H~-' ) (z )I  for n E lo, el. (20) 

We can now replace H:'ml+')(zij) in (19) by its recurrence derived from (20) and then form 
again the &( l t i i ] )  functions. This leads to the new equation 

If now we replace H$)(zjj) by its recurrence expression in (20), we recover equation (=a). 
Finally, we can replace both H~'mltn)(zij) and Hj?)(zij) by their respective recurrences. 

We obtain then a complicated expression which can be simplified by replacing the 
,?jgt,(lfil + I )  and &,(Ifil - 1) terms by their equivalents derived fiom ( S a )  and (34) 
respectively. This leads to our final recurrence relation 

with 

and 

A fast computing of the h$,(lfil) can then be achieved by using (34) and (35) in the case 
where e or e' = e,, which would otherwise impose the calculation of a lot of unneeded 
terms. 
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5. Test 

We performed our tests with the high-energy case in mind as it is for this type of calculation 
that the problem of speed becomes the most acute.. Consequently, we did not test Chew’s 
recurrence scheme as it is not possible to truncate the calculation. Moreover, Manar and 
Brouder [ 121 have already reported on convergence tests that show this method to bc unstable 
at high energy. 

Fritzsche’s and Nozawa’s methods having basically the same structure (they only differ 
in the way of implementing the incrementation in m), they should not differ appreciably in 
spced. Therefore, we only retained the latter for our tests. This left us with three methods, 
all of them based on the same magnetic quantum number expansion thal can be truncated 
at high energy: Nozawa’s, Rehr and Albers’ and OUTS to which we added the direct method 
given by equation (9) in order to have a time reference. 

We tested them in speed for thc full calculation (i.e. without any truncation). For this, 
we computed all the values of &(lfil) up to .#L-INL-I(NL- 1) where NL is the maximum 
number of e values. This was done for r,, = 2 8, and a kinetic energy Ek = 1000 eV leading 
to kr;j = 32.4. The results of these tests are given in table I .  These results arc in units of 

s and were obtained on an IBM RS6WO computer without any optimization. With 
a -0 optimization, the Rehr-Albers method becomes slightly faster than our method by 
about 309’0, both of them being about three times faster than Nozawa’s recursion scheme. As 
discussed in section 3, this result was expected as in this latter case, a lot of additional terms 
are necessary to the calculation. Note that this 30% difference between the Rehr-Albers 
method and ours occurs for NL = 20 and then decreases quickly when NL is increased. 

Table 1. A comparison of lhe CPU time required by the different melhods. 

St  = 5 6~ = 10 St = 15 8~ =20 6~ =25 8, = 30 

Reference 6.95 67.3 305.24 8600 27 799 50 799 
Nozawa 0.81 4.58 14.48 30.49 58.74 102.59 
Ncw ones 0.28 1.59 4.85 9.94 18.52 31.88 
Rehr-Alben 0.48 2.14 7.63 18.06 37.40 71.78 

Next we checked the stability of the methods tested. For this we kept rij = 2 A and 
scanned the energy from 1 eV to 20000 eV for all three methods plus the direct method 
where the 3 j  coefficients were calculated explicitly. We did this for NL = 5 ,  IO, 15 and 
25 and calculated &(e) with e = NL - 1, which is the value that requires most computing 
and should be therefore the most subject to instability. 

Only two methods, ours and the Rehr-Albers one, gave exactly the same results on the 
whole range of energy and for the different values of e .  As can be seen from figure 2, 
where lgy414(14)[ is plotted versus the energy, the Nozawa recursion scheme is unstable 
above 900 eV in this case. Actually, a closer look at the numerical results reveals that even 
at the beginning of the energy range, there are slight differences between Nozawa’s method 
and the other ones. Thc limit of stability varies with NL., the Nozawa results being false 
over all the energy range for &.,(24)1 while this limit increases to about 1450 eV for 
1&,(9)1. For 1&,(4)1 all four methods give exactly the same results. Note that the stability 
limit should be sensitive to rij as well. 

In order to isolate the origin of the instability of the Nozawa relations, we calculated 
I&%(m)[ for m = 0, 5 and 10. When m = 0 or 5, we found the recurrence relations to be 
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' . I . - - -  I * , . .  

.... Nozawa's recurrence 
New recurrence 

.............. .................................... 

I , . . . , , , , ,  

stable on the whole range of energy while form = 10 we obtained differences in the fourth 
digit above 17 400 eV. This clearly means that it is the incrementation in m, equation (25a), 
that is unstable. However, this instability is not too critical as at high energy only very few 
values of m are necessary to achieve convergence. Note that, the instability being caused 
by the incrementation in m, it does not allow to draw any conclusion concerning Fritzsche's 
relations which do  not make use of this incrementation scheme. 

We found also the direct method to be unstable in certain cases. To test it, we computed 
/@24(24)1 over the same range of energy but with rij varying from 1 8, to 5 8, by steps of 
1 A, and compared the results obtained to those obtained with the two stable methods. A 
difference in the fourth digit occurred at 16000 eV for rij = 1 8, and down to 600 eV for 
qj = 5 8,. As the Gaunt coefficient is not affected by the path length, these results show that 
the recurrence relation (28) for the Hankel polynomials is not always stable. However, this 
instability can be easily overcome by calculating cc(kr$ using the available stable schemes 
devised for hp)(krjj). 

Then, we tested Fritzsche's statement concerning inaccuracies in the Rehr-Albers 
method. We performed the same kind of calculation in the range 1-20000 eV with rjj 
going as far down as 0.1 A and as far up as 10 A but did not see any instability at all. 
This difference in the behaviour of the Rehr-Albers method is probably due to the fact that 
Ritzsche tested essentially the 6 x 6 matrix approximation of the Rehr-Albers expansion, 
i.e. a low-order truncation, while we used the full expansion in our calculations. 

Finally, we performed the same tests adding a small imaginary component to k and did 
not find any change in the stability domains. 
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6. Conclusion 

We have derived new recurrence relations for the matrix elements of the propagator. These 
relations have been tested in speed and stability with other existing methods: thc direct 
method, Nozawa's recursion scheme and the Rehr-Albers separable representation. We 
found our method to be both as fast and as stable as the full Rehr-Albers one while 
Nozawa's relations can be unstable, Furthermore, our method can be truncated at high 
energy without any stability problem whereas approximations in the Rehr-Albers expansion 
might lead to inaccuracies as discussed by Fritzsche, Finally, we found the direct method 
to be inaccurate at high energy or for large values of the interatomic distance due to an 
instability in the standard recurrence relation for the Hankel polynomials. 
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